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When a vertical solid is brought in contact with the surface of a wetting liquid, a
meniscus starts rising up the solid, until it reaches its steady state. We study this
dynamical phenomenon experimentally with liquids of low and high viscosity, and
taking as solids either large rods or small fibres. In the inviscid limit, we show that

the rising time scales as
√
ρr3

0/σ, where ρ and σ are the density and surface tension
of the wetting liquid and r0 the radius of the fibre. This characteristic time holds for
small fibres, with radii smaller than the capillary length a. For large rods or planar
solids, r0 is replaced by a in the expression for the rising time. In the viscous limit, the
rising time scales as ηr0/σ where η is the dynamical viscosity. Again, r0 is replaced by
the capillary length a for large rods.

1. Introduction
In ancient Greek, ‘mênê’ designated the moon. It became the root of the word

‘meniscus’ which stands for a crescent of the moon and is associated with the wetting
of a liquid on a solid. An example of liquid meniscus is presented in figure 1(b): a
vertical planar wall initially held above a horizontal interface (figure 1a) is lowered
to contact with a wetting liquid (contact angle θe smaller than π/2), which forces the
liquid to develop a meniscus of typical size l.

The liquid being characterized by its density ρ and surface tension σ, the shape of
the interface results from the equilibrium between the Laplace depression, of order
σ/l, and the gravitational depression of order ρgl, where g is the acceleration due

to gravity. The balance between these two terms leads to l ∼ a, where a ≡ √σ/ρg
is the capillary length of the interface. In the case of a water/air interface on Earth,
σ ≈ 0.073 kg s−2, ρ ≈ 103 kg m−3, g ≈ 9.81 m s−2 so that a ≈ 2.7 mm. This shape
remains unchanged as long as the radius of the wall r0 is larger than a (r0 = ∞ for
a planar wall). In the limit r0 � a, the pressure balance is dominated by the Laplace
pressure associated with the two radii of curvature of the interface, and gravity can
be neglected in the region close to the fibre. In this limit, l becomes of the order of
r0, as it can be observed in figure 1(c), where r0/a is 0.08. The same scaling is found
for menisci in capillary tubes, since these menisci are (almost) spherical for r0 � a, r0
being here the internal tube radius.

Historically, the physical origin and the shape of the static meniscus have been
among the first phenomena studied in capillarity, in particular by Hauksbee (1709),
as cited by Maxwell (1875) in his introduction to the Capillary Action written for the
Encyclopaedia Britannica: “the first accurate observations of the capillary action of
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Figure 1. Example of static menisci observed with a wetting liquid (hexane): (a) planar wall just
before the contact, (b) meniscus on a planar wall a ‘long’ time after the contact, (c) meniscus on a
fibre of diameter r0 = 0.225 mm a ‘long’ time after the contact.

tubes and glass plates were made by Hauksbee. He ascribes the action to an attraction
between the glass and the liquid”.

The first theoretical solution of the shape of the static meniscus on a planar wall is
due to Laplace (1806). In this configuration, the Laplace equation σC = ρgz, where
C is the curvature of the interface, can be integrated twice with appropriate boundary
conditions. This classical analytical solution is presented in Bouasse (1924) and can
also be found in Landau & Lifchitz (1971). In the limit r0/a� 1, there is no general
analytical solution and the problem of the static meniscus shape has been addressed
numerically by White & Tallmadge (1965). Analytically, the shape can be approached
as follows: in the region close to the fibre, the Laplace equation is reduced to σC = 0,
which can be integrated in axisymmetric coordinates. This provides a catenary as a
shape for the interface. This catenary can only match the reservoir if gravity is taken
into account, with an appropriate asymptotic matching technique, first developed by
James (1974) and improved by Lo (1983). The stability of these static solutions has
been discussed by Pitts (1976).

We are interested in this article in determining the dynamics of the meniscus from
the contact (t = 0) to the static regime (t = ∞), for different fibre radii r0 and various
liquid viscosities η. Applications are numerous, from surface tension measurement
devices to welding and soldering processes, via surface coating methods. This problem
has been discussed in the case of a meniscus rising inside a capillary tube. In the
viscous regime described by Washburn (1921), balancing viscosity with capillary force
leads to a diffusive-type law (z ∼ √t, z being the height of the meniscus). Then,
gravity slows down the process and causes the height to relax exponentially towards
its equilibrium value. The inertial regimes (which are particularly relevant at short
time) were discussed more recently: balancing inertia with the capillary force leads to
a constant velocity of rise (z ∼ t), possibly followed by a parabolic saturation due to
gravity and oscillations damped against time (Quéré 1997).

Here, unlike the tube case, the geometry is open, which makes both the height
of the rise and the shape of the meniscus unknown. This class of problem was first
discussed by Keller & Miksis (1983) in the inviscid limit and for large Bond numbers
(Bo ≡ r0/a). In this case, they found a self-similar solution in which the meniscus
height z varies as (t2σ/ρ)1/3. The characteristic time for the meniscus onset, te, can thus
be evaluated: for z ∼ a, we find te ∼ (σ/(ρg3))1/4. This analysis holds provided that
the Reynolds number Re ≈ z(dz/dt)/ν remains large compared to 1, with ν ≡ η/ρ the
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Figure 2. Parameter space (Ka, Bo) and definition of the different domains to be investigated. The
Kapitsa number is fixed by the liquid properties, and the Bond number by the solid geometry.

kinematic viscosity. Using the previous scalings, this condition corresponds to large
Kapitsa numbers (Ka = [σ3/(ρ3gν4)]1/4)†. In the (Ka, Bo) parameter space presented
in figure 2, the region investigated by Keller & Miksis is domain 4.

Menisci of viscous liquids along small fibres (domain 2) have been studied experi-
mentally by Quéré & di Meglio (1994). Using a quasi-steady approach and Tanner’s
law for the dynamic contact angle (Tanner 1979), they show that the characteristic
time associated with the rise scales as ηr0/σ. This time increases with the fibre radius,
but should saturate at a value of order ηa/σ, in the limit of large fibres (Bo � 1).
These authors did not visualize the interface directly but only measured the variation
of the dynamic contact angle as it approaches equilibrium.

In § 2, we present the experimental apparatus used to observe and quantify the
dynamics of menisci. The experimental results are displayed in § 3, prior to the
models in § 4 and the conclusions in § 5.

2. Experimental set-up
The experimental apparatus is sketched in figure 3. A cylindrical rod is hung above

the liquid interface and its height adjusted via a micro-control translation table. To
avoid oscillations of the rod when approaching the interface, we used a contact-free
damping device which does not alter the verticality but increases the friction with the
surrounding air. This setup ensures that the rod is perpendicular to the interface. The
rise of the meniscus was observed with a high-speed video camera Kodak-HS-4540
coupled with a zoom and a micro-computer, using a backlight scattering method.
To avoid reflection and refraction problems across the containing glass walls, the
reservoir was slightly overfilled.

As shown in figure 1(a), the spatial origin can be precisely determined using the
reflection on the liquid surface. The spatial resolution depends both on the size of the
CCD matrix (256 × 256) and on the magnification of the zoom which was adjusted
so that the final meniscus height ze occupied the full screen. The spatial resolution

† This non-dimensional number is often called the Morton number, following Haberman &
Morton (1954). However, as mention in Fulford (1964), Kapitsa (1948) introduced the same dimen-
sionless quantity in his study on the flow of thin films.
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Figure 3. Presentation of the experimental set-up.

Fluid ρ (kg m−3) ν (mm2 s−1) σ (kg s−2) Ka ≡
(

σ3

ρ3gν4

)1/4

a ≡√σ/ρg (mm)

Hexane 660 0.45 0.018 481 1.7
V1 815 1.0 0.021 204 1.6
V5 913 5.0 0.021 37 1.5
V10 930 10 0.021 18 1.5
V100 952 100 0.021 1.82 1.5
V1000 962 1000 0.021 0.18 1.5
V12500 965 12500 0.021 0.01 1.5
Water 1000 1.0 0.073 446 2.7

Table 1. Physical properties of the different liquids used at room temperature, 22 ◦C.
The V series correspond to silicone oils.

r0 (mm) 0.0625 0.13 0.225 0.5 1.0 2.0 4.0 8.0
Bo 0.04 0.08 0.15 0.33 0.66 1.33 2.66 5.33

Table 2. Radii r0 of the cylinders and corresponding Bond numbers (taking a = 1.5 mm).

can thus be evaluated to ze/256 by pixel and the precision on the interface location
to ±3 pixels.

The reflection also allows us to determine precisely the contact time t = 0. The
uncertainty we have on the time scale is the interval between two images. It thus
depends directly on the recording rate, which could be varied from 30 pictures per
second (p.p.s.) to 18 000 p.p.s. according to the liquid viscosity.

We used as liquids silicone oils (Polydimethylsiloxane) and hexane, of kinematic
viscosities ranging between 0.45 and 12 500 mm2 s−1. Their properties are given in
table 1. As well as the density, viscosity and surface tension, we also display in table 1
the Kapitsa number and the capillary length. The corresponding values for water are
indicated for comparison.

Finally, the solids were either stainless steel rods or thin tungsten wires. Their
characteristic radii, r0, are displayed in table 2, together with typical values of Bond
numbers (taking a = 1.5 mm).
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Figure 4. Example of meniscus dynamics obtained with hexane and r0 = 8.0 mm (4500 p.p.s.).
Each picture corresponds to an evolution z(t)/ze = i/10, where i ∈ [0, 10] is an integer.

3. Experimental results
We present in figure 4 a series of pictures showing the onset of a meniscus for

hexane and r0 = 8 mm. The spatial scale is indicated in the top left image and
the time written in each picture. Time increases from left to right and from top to
bottom. The observed parameters z(t) and r(t) are indicated with arrows on the first
and second line, respectively. The last image is taken after 1 min. and corresponds
to the equilibrium (ze ≈ 2 mm). The whole sequence presents the phenomenon at
z(t)/ze = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.

The first indicator we have chosen to characterize the dynamics of the meniscus is
the time tz needed to reach a given location z. This time is used to quantify the effect
of the liquid viscosity. For z = 0.25ze, 0.5ze and 0.8ze, figure 5 shows the evolution of
tz with the viscosity, for r0 = 8.0 mm.

For a given z, tz remains constant at small viscosities and increases almost linearly
with ν at large viscosities. The transition between the viscous-dependent and the
viscous-independent domains occurs around ν = 10 mm2 s−1, which corresponds to
a Kapitsa number of order 10. The transition region does not depend on z. As tz
increases with z, the general features of the evolution are conserved and the transition
always occurs in the same range of viscosity.

Taking ν = 0.45 mm2 s−1 to represent the inviscid domain, we show in figure 6(a)
the influence of the fibre radius r0 on the time tz , for z = 0.2 and 0.4 mm. It is
observed that for a radius r0 larger than 0.5 or 1 mm, the time tz needed to reach
z = 0.2 mm is the same (tz ≈ 1 ms). For radii smaller than 0.5 mm, tz increases as the
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Figure 5. Evolution of the indicator time tz with the viscosity, for different values of z:
�, z = 0.25ze; �, z = 0.5ze; •, z = 0.8ze.
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Figure 6. Evolution of the indicator time tz with the fibre diameter r0, in the inviscid domain (a)
and in the viscous domain (b): �, z = 0.2 mm; �, z = 0.4 mm.

radius is decreased. It takes for example 6 ms to reach z = 0.2 mm for r0 = 0.0625 mm.
One could say that for this scaled height, the smaller the fibre the slower the rise
(which physically shows the opposing role of the second curvature, associated with
the fibre radius, and which generates a positive Laplace pressure). The evolution is
similar with z = 0.4 mm, where the transition also occurs between 0.5 and 1 mm,
which corresponds to a Bond number of order 1.

Using the same indicator, figure 6(b) shows the evolution of tz(r0) observed in the
viscous domain with ν = 1000 mm2 s−1. For radii larger than 0.5 or 1 mm, the time
tz required to reach z = 0.2 mm remains constant (tz ≈ 200 ms). Again, for smaller
radii, tz increases as r0 is decreased. These behaviours are the same for z = 0.4 mm.
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Figure 7. Presentation of the dynamics of the interface from z/ze = 0 to z/ze = 1 for the four
different domains identified in figure 2.

Hence, figures 5 and 6 allow us to make precise the boundaries of the different
domains displayed in figure 2. For each domain, we present in figure 7 an example of
the meniscus shape. In each case, the meniscus is shown at six different z/ze locations:
0, 0.2, 0.4, 0.6, 0.8 and 1, for which the corresponding times are indicated.

In the inviscid domains 3 and 4, in the range z/ze 6 1/2, the radial and the vertical
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2.0

1.5

1.0

0.5

0 0.2 0.4 0.6 0.8 1.0

(a)

z /ze

r
ze

2.0

1.5

1.0

0.5

0 0.2 0.4 0.6 0.8 1.0

(b)

z /ze

Figure 8. Evolution of the radial extent r(t)/ze as a function of the meniscus height z(t)/ze, for
different fibre radii: �, r0 = 0.225 mm; �, r0 = 4 mm; and different liquids: (a) V1000, (b) hexane.

101

100

10–1

10–2

10–1 100 101 102 103 104 105 106

t (ms)

(a)

z (mm)

100

10–1

10–2

10–2 10–1 100 101 102 103 104 105

t (ms)

(b)

Figure 9. Influence of the viscosity on the dynamics of the contact line with (a) non-curved meniscus
obtained with r0 = 4.0 mm (�, domain 1 obtained with V1000; �, domain 4 obtained with hexane),
(b) curved meniscus obtained with r0 = 0.0625 mm (�, domain 2 obtained with V1000; �, domain
3 obtained with hexane).

extents seem to develop on a similar time scale. Looking at the junction between
the meniscus and the horizontal level, one observes that the interface is perturbated
ahead of the meniscus showing the existence of a ‘depression’ wave.

In the viscous domains 1 and 2, no waves are visible ahead of the meniscus, and
the meniscus spreads faster radially than vertically.

As can be expected, the final meniscus shape is the same for a given Bond number,
whatever the viscosity of the liquid, provided that the static contact angle is the same.
This can be observed in figure 7, where domains 1 and 4 appear to have a similar
final state, as do domains 2 and 3.

Focusing on the apparent conical shape of the meniscus at short times, we present
in figure 8 the radial extent r(t)/ze as a function of the height evolution z(t)/ze, for
both V1000 (figure 8a) and hexane (figure 8b).
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In the range z(t)/ze � 1, it is observed that the vertical and the radial extents can
be related by a linear relation r ≈ αz. For V1000, this behaviour holds up to z ≈ 0.3ze
and α is of order 3 for the large rod and of order 5 for the small fibre. For hexane,
the linear behaviour extends further, up to z 6 0.6ze and α is of order 1.4 and 1.7
respectively for the rod and for the fibre.

Concerning the dynamics of the rise, we present in figure 9 the influence of the
viscosity on the position of the contact line z. The large Bond number limit is
obtained with r0 = 4.0 mm. The dynamics observed in domain 1 with V1000 and in
domain 4 with hexane is displayed in figure 9(a). Both trajectories tend to the same
asymptotic value ze ≈ 2 mm, with two characteristic times, te ≈ 50 ms for hexane and
te ≈ 10 000 ms for V1000. The steady state is reached after a growth phase which
is not very different for the two liquids and which looks like a power law in time,
z ∼ t0.7. The transition towards the steady state is smoother in the viscous case.

Similarly, figure 9(b) presents the trajectories observed with the same fluids in the
small Bond number limit (r0 = 0.0625 mm). The asymptotic limit ze ≈ 0.26 mm is
reached after a characteristic time te ≈ 20 ms with hexane and te ≈ 3000 ms with
V1000. Again, the dynamical phase looks similar in the viscous and inviscid cases,
but the scaling is found to be different: z ∼ t0.5.

4. Models
This section is devoted to a presentation and an analysis of models. We successively

discuss the statics, and the dynamics of the rise.

4.1. Static meniscus

4.1.1. The general equation of the shape

The equation of the static meniscus is obtained by balancing at each point of the
interface the hydrostatic pressure Pa − ρgz with the Laplace pressure Pa + σC , where
Pa is the ambient pressure and C the curvature of the interface at the curvilinear
coordinate s (Bouasse 1924). With the conventions presented in figure 1, s = 0 at the
wall, where r = 0 and z = ze.

This pressure balance leads to the following equation for the meniscus shape:

dθ

ds
− cos θ

r + r0
=

z

a2
, (4.1)

where we have used the expression for the curvature C = −dθ/ds + cos θ/(r + r0).
Equation (4.1) must be integrated with the conditions θ(r = 0) = θe and θ(z = 0) =
π/2. Whatever the fibre radius r0, equation (4.1) admits a first integral which allows
us to determine the volume of liquid V above the reservoir level z = 0:

V = 2πr0a
2 cos θe. (4.2)

4.1.2. Meniscus on a planar wall

The meniscus on a planar wall corresponds to the limit r0 � a. Then, equation (4.1)
reduces to dθ/ds = z/a2. The first integration of this reduced form gives the relation
z(θ):

z =
√

2(1− sin θ)a. (4.3)

For θ = θe we find that the meniscus height is ze =
√

2(1− sin θe) a, which can thus
vary from 0 to 2a. In the case θe = 0, we observe that ze =

√
2a.
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Figure 10. Static meniscus on a wall: (a) the general shape z/a(r/a+K). (b) Determination of the
constant K as a function of θe.
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Figure 11. Comparison between the observed static meniscus and the theoretical shape derived
from equation (4.4): (a) hexane with r0 = 8.0 mm, (b) V1000 with r0 = 8.0 mm.

The meniscus shape z(r) results from another integration of equation (4.3) which
can be written in the implicit form:

1

2
ln

(
1 +

√
1− (z/a)2/4

1−√1− (z/a)2/4

)
− 2
√

1− (z/a)2/4 = r/a+K, (4.4)

where K is a constant to be determined with the limit condition in r = 0. The
corresponding shape is presented in figure 10(a), where equation (4.4), shown as a
solid line, is completed by its symmetric part, shown as a dotted line, which expresses
that the meniscus shape is the same when the liquid is at the right or at the left of
the wall. In the case θe = 0, the position of the wall is indicated in figure 10(a). The
relation K(θe) is displayed in figure 10(b).
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Figure 12. Comparison between (a) the observed shape of a thin sheet of stainless steel
and (b) the theoretical shape derived from equation (4.4).

This theoretical shape is compared in figure 11 with the static meniscus observed
experimentally with hexane (figure 11a) and V1000 (figure 11b) for r0 = 8.0 mm.

In Maxwell (1875), it states that “The form of the capillary surface is identical
with that of the elastic curve . . . ”. This analogy has been tested using a stretched
stainless steel saw blade (figure 12a), the shape of which is compared with the
looping described by equation (4.4) in figure 12(b). In this experiment, the capillary
length is defined by a ≡ √EI/P , where E ≈ 2 × 1011 Pa is the Young modulus,
I ≈ 2.5 × 10−13 m4 the moment of inertia of the sheet, and P ≈ 10 N the applied
stretching force. These values lead to a ≈ 7 cm and the non-dimensional observed
loop compares satisfactorily with the curve presented in figure 10(a). A more detailed
discussion of this analogy can be found in Roman, Gay & Clanet (2001).

4.1.3. Meniscus on a small fibre

The small fibre limit is defined by r0 � a. Then, as long as r remains small
compared to a, the shape of the meniscus can be obtained by neglecting gravity in
equation (4.1), which yields

dθ

ds
=

cos θ

r + r0
. (4.5)

This equation expresses the equality of the two principle radii of curvature and leads
to a catenary:

r0 + r

cos θe
= r0 cosh

[
ze − z

r0 cos θe + ln /((1 + sin θe)/ cos θe)

]
. (4.6)

In this algebraic expression for the shape, the meniscus height ze is unknown and
cannot be determined by the condition at r∞ since equation (4.6) only holds in the
domain r � a. However, ze can be chosen such that the corresponding catenary has
the volume of the meniscus given by equation (4.2). This argument leads to

ze ≈ r0 cos θe ln

[
4a

r0(1 + sin θe)

]
. (4.7)
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(a) (b)

Figure 13. Comparison between the observed static meniscus and the theoretical shape derived
from the numerical integration of equation (4.1) (continuous line in a), and from the asymptotic
solution presented in equation (4.6) and (4.8) (dotted line in b): (a) hexane with r0 = 0.225 mm, (b)
V1000 with r0 = 0.225 mm.

This approximation represents the first term of an expression derived by James (1974),
through an asymptotic matching between the inner catenary solution and the outer
region where gravity can no longer be neglected:

ze ≈ r0 cos θe ln

[
4a

r0(1 + sin θe)
− γ
]
, (4.8)

where γ ≡ 0.58 is the Euler constant. This expression was later improved by Lo (1983)
for θe 6= 0. Figure 13 shows two static menisci observed experimentally with hexane
(13a) and V1000 (13b): the shape obtained by integrating numerically equation (4.1)
is drawn (full line in figure 13a), together with the shape given by equations (4.6) and
(4.8) (dotted line in figure 13b). In both cases, the calculated shape is very close to the
observed meniscus. This verification allows us to use James’ asymptotic expression of
the height for small fibres (Bo 6 1): the relative error in the height using equation
(4.8) is 20% below the actual value for Bo = 1, 10% for Bo = 0.8 and smaller than
1% for Bo 6 0.3.

4.2. The dynamic meniscus

To describe the dynamics of the meniscus, we develop an integral model based on a
driving capillary force Fc, acting on the meniscus of mass M, velocity U (figure 14),
and subjected to a viscous force Fν .

4.2.1. Inertial meniscus on a planar wall

In this limit (Ka � 1, Bo � 1, domain 4), we can neglect viscous forces and
balance the capillary force with both inertia and gravity:

d(MU)

dt
= Fc −Mg. (4.9)
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Figure 14. Sketch of the dynamic meniscus (a) with no added mass and (b) with an added mass.

At equilibrium, Fc = Meg, where Me is the mass of the static meniscus. From equation
(4.2), Me = 2πρr0a

2, and we deduce Fc = 2πr0σ. Equation (4.9) can then be written

d(MU)

dt
= Fc

(
1− M

Me

)
, (4.10)

where the ratio of mass M/Me is of order (z/a)2. In the limit z/a� 1, the right-hand
side of equation (4.10) reduces to Fc. The observation of the meniscus during the
rise (figures 4, 7 and 8b) suggests that the meniscus shape can be approximated by a
corner r = αz, so that M ≈ απρr0z2. Then, equation (4.10) reduces to

d2z3

dt2
≈ 6

α

σ

ρ
. (4.11)

Equation (4.11) can be integrated twice with the initial condition z(t = 0) = 0 which
leads to

z ≈ (3/α)1/3

(
σt2

ρ

)1/3

. (4.12)

We find here the scaling of all capillaro-inertia phenomena with no characteristic
length scale (z3 ∼ σt2/ρ), first proposed by Keller & Miksis (1983). Note that this
differs from the inertial capillary rise in a tube (Quéré 1997), where the mass is simply
proportional to z, so that a constant rising velocity is found for the meniscus, z ∼ t.

The measured height z for hexane rising along large rods is presented in figure 15
versus σt2/ρ. In the range z < 0.7ze, the slope is found to be 0.34± 0.01, and the best
fitting linear relation in t1/3 yields z = 0.65(σt2/ρ)1/3. This function is the straight line
in figure 15. The 1/3 power law is achieved up to z/ze ≈ 0.7. Since the static meniscus

height varies as ze =
√

2a, a characteristic time for the rise should be te ≈ 3.2
√
ρa3/σ.

Concerning the prefactor 0.65 for the contact line trajectory, we find from equation
(4.12) that this corresponds to α ≈ 10. This discrepancy with the value observed
in figure 8(b) (α ≈ 1.4) can be understood qualitatively by taking into account the
entrained mass in the bath: for the remaining part of the liquid, the dynamic meniscus
acts as a sink. Over a characteristic distance of order z, the fluid under the meniscus
is set into motion with a characteristic speed ż. To correct the model and account
for this entrained added mass, we assume that our system is composed of an internal
mass Mi plus an outside mass Mo characterized by a length L = βz (see figure 14b).
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Figure 15. Dynamic of the meniscus obtained with hexane: �, r0 = 8 mm; �, r0 = 4 mm. The
straight line corresponds to the linear relationship z = 0.65(σt2/ρ)1/3.

These assumptions modify the equation of motion to

d

dt
[(Mi +Mo)U] = Fc −Mig, (4.13)

which can be integrated through similar steps and leads to a corrected expression for
the contact line trajectory:

z ≈
(

3

α(1 + β)2

)1/3(
σt2

ρ

)1/3

. (4.14)

With α ≈ 1.4, we find from the experimental prefactor 0.65, that β lies between 1.5
and 2. The entrained mass is thus far from negligible in this problem, a difference,
again, with the capillary rise problem, where the entrainment effect develops on a
length of order r0, the radius of the tube (Szekeley, Neumann & Chuang 1971).

4.2.2. Inertial rise on a small fibre

In this limit (Ka� 1, Bo� 1, domain 3), the meniscus is an axisymmetrical cone,
which modifies the way the mass scales with z:

M ≈ π

3
α2ρz3. (4.15)

Considering again the beginning of the rise, z � (r0a
2)1/3, the equation of motion

(4.13) is written

d2z4

dt2
=

24

α2

σr0

ρ
. (4.16)
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Figure 16. Dynamic of the meniscus obtained with hexane: •, r0 = 0.0625 mm; �, r0 = 0.13 mm;
�, r0 = 0.26 mm. The straight line corresponds to the best fit linear relationship z = 0.67(σr0t

2/ρ)1/4.

Equation (4.16) can be integrated twice with the initial condition, z(t = 0) = 0, which
leads to

z ≈ (12/α2)1/4

(
σr0t

2

ρ

)1/4

. (4.17)

The height z observed experimentally with hexane and small fibres is presented in
figure 16 versus σr0t

2/ρ, together with the best fit linear relationship. One observes
in this figure that the three trajectories reach different equilibrium heights, as shown
in § 4.1.3. But the first part of the rise collapses on a single curve, approximated well
by z = 0.67(σr0t

2/ρ)1/4. Since ze ∼ r0, one deduces that the characteristic time of

establishment of the meniscus is te ≈ 2.2
√
ρr3

0/σ. The prefactor 0.67 in the contact
line trajectory again implies a value of β standing between 1.5 and 2, characterizing
the entrained mass.

4.2.3. Viscous rise on a planar wall

The viscous regime is very different, as observed in figure 7, where the meniscus is
found to be quasi-static, for each dynamic contact angle θ. Thus, for menisci satisfying
Ka � 1 and Bo � 1 (domain 1), we expect equation (4.3) to be obeyed. This can
be tested easily by plotting, as in figure 17, the observed sin θ as a function of the
measured quantity 1− 1

2
(z/a)2. A linear relation is indeed found, confirming that the

shape of the meniscus is quasi-static during its onset.
The capillary force Fc = 2πr0σ can be written

Fc

2πr0
= σ cos θ + σ(1− cos θ). (4.18)

The first term in the right-hand side of equation (4.18) is balanced by the weight of
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Figure 17. Comparison between the sine of the observed angle and the sine of the calculated angle
from the quasi-steady approach, sin θ = 1 − 1/2(z/a)2. The continuous line represents an equality
between both terms.

the meniscus and is responsible of the quasi-steady shape observed. The second term,
σ(1 − cos θ), is responsible for the motion of the contact line. Balancing this force
with the viscous one close to the moving edge leads to Tanner’s law, which relates
the dynamical contact angle with the line velocity: θ3 = C1ηU/σ, where C1 ≈ 80 is a
constant. This law, established experimentally by Hoffman (1975) and Tanner (1979)
and derived theoretically for small θ by Cox (1986) and Gennes (1985), surprisingly
turns out to be valid up to θ ≈ 150◦. Together with equation (4.3), Tanner’s law leads
to an evolution equation for the contact angle:

dθ

dt
= −θ

3
√

1− sin θ

cos θ
, (4.19)

where the time is scaled by τ = (C1/
√

2)ηa/σ. At short times, θ(t) ≈ π/2 − ε(t),
equation (4.19) leads to the linear evolution: θ(t) ≈ π/2 − π3t/8

√
2. At long times,

where θ � 1, a linearization of equation (4.19) yields a slow relaxation for the contact
angle: θ ∼ 1/

√
t. For the whole trajectory, equation (4.19) can be integrated with the

initial condition θ(t = 0) = π/2. The law θ(t) is then used to determine the contact line
location z(t) using equation (4.3): z(t) =

√
2(1− sin θ(t))a. This integrated trajectory

is compared in figure 18 with the behaviours observed with V1000 and large fibres.
Without any adjustable parameter, the comparison is satisfactory until equilibrium.

For the asymptotic behaviours of the trajectory, one finds that z/a ∼ t/τ at small

time (t � τ) and that z/a ∼
√

1− 1/
√
t/τ when approaching equilibrium (t � τ).

It must be stressed that the linear asymptotic behaviour can only be observed at
very small times, i.e. for t/τ < 10−3. In the time range in which the experiments are
conducted, we essentially observe matching between the linear regime and the static
behaviour.
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Figure 18. Comparison between the integration of equation (4.19) (continuous line) and the
viscous meniscus trajectories observed with V1000: �, r0 = 8 mm; �, r0 = 4 mm.

4.2.4. Viscous rise on a small fibre

In this limit (Ka � 1, Bo � 1, domain 2), we neglect inertia and follow the same
approach as for domain 1. We assume a quasi-steady meniscus, with a height now
given by equation (4.8). Using Tanner’s law, the time evolution of the apparent contact
angle is then described by the differential equation

dθ

dt
= − θ3

f(θ, Bo)
, (4.20)

where

f(θ, Bo) = sin θ

[
ln

(
4

Bo(1 + sin θ)

)
− γ
]

+
cos2 θ

1 + sin θ
. (4.21)

The characteristic time used to scale equation (4.20) is τ = C1ηr0/σ. At short times,
(t� τ), θ ≈ π/2− θ̇0t, with θ̇0 = (π/2)3/(ln 2/Bo− γ). At long times, f(θ, Bo) ≈ 1 and
we recover the behaviour observed with large fibres θ ∼ 1/

√
t. More quantitatively,

equation (4.20) can be integrated with the initial condition θ(t = 0) = π/2. The θ(t)
relation is then used in equation (4.8) to obtain the contact line trajectory z(t). The
comparison between the integrated trajectory and the one observed experimentally
with V1000 and different Bond numbers is presented in figure 19 (�, Bo = 0.15 and
�, Bo = 0.087). Again, without any adjustable parameter, this comparison reveals a
satisfactory agreement up to equilibrium.

5. Conclusion
We have studied experimentally the time evolution of a wetting liquid interface

along a vertical cylindrical fibre, from the contact to the steady meniscus. Con-
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Figure 19. Comparison between the integration of equation (4.20) (continuous and dashed line)
and the viscous meniscus trajectories observed with V1000: �, r0 = 0.13 mm; �, r0 = 0.225 mm.

sidering viscous and non-viscous liquids forming menisci on large rods and small
fibres, we have defined four domains, characterized by different dynamics and scaling
parameters.

For non-viscous liquids on a large rod, we have shown that the meniscus height z in-
creases as (σ/ρ)1/3t2/3. Thus, the static position (z ∼ a) is reached after a characteristic

time te ∼
√
ρa3/σ. For water, te ≈ 10 ms.

For non-viscous liquids that rise on a small fibre, the scaling for the height is
modified for geometric reasons: the height z is found to scale as (σr0/ρ)1/4t1/2. Then,

the static meniscus (z ∼ r0) is reached after te ∼
√
ρr3

0/σ, which varies quickly with
r0 (for r0 ≈ 10 µm, we find te ≈ 10 µs with water).

The dynamics of viscous liquid rising on large or small fibres is described well by a
quasi-static model, based on a steady meniscus shape and on Tanner’s law. For large
fibres, the length scale is a, and the time scale 80ηa/σ. With an oil 1000 times more
viscous than water, we find te ≈ 8 s. For small fibres, the length scale is r0 and the
time scale 80ηr0/σ. With the same oil on a 10 µm fibre, we find te ≈ 40 ms.

We thank the referees for their valuable comments and suggestions as well as J.
Magnaudet and H. A. Stone for discussions on the Kapitsa–Morton number.
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